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The time development of small three-dimensional disturbances in plane Poiseuille
flow of helium II is considered. The study is conducted by considering the interaction
of a normal fluid field and a superfluid field. The interaction is caused by a mutual
friction forcing between the two flow fields. Specifically, the stability of the normal
fluid affected by the mutual forcing is considered. Compared to the ordinary fluid case
where the mutual forcing is not present, the presence of the mutual forcing implies
a substantial increase of the transient growth of the disturbances. The increase of
the transient growth occurs because the mutual forcing reduces the damping of the
disturbances. The phase of transient growth becomes thereby more prolonged and
higher levels of amplification are reached. There is also a minor effect on the transient
growth caused by the modification of the mean flow owing to the mutual forcing.
The strongest transient growth occurs for streamwise elongated disturbances, i.e.
disturbances with streamwise wavenumber α = 0. When α increases beyond zero, the
transient amplification quickly becomes reduced. Striking differences compared to the
ordinary fluid case are that the largest transient amplification does not occur when
the spanwise wavenumber (β) is close to two and that the peak level of the disturbance
energy density amplification does not depend on the square of the Reynolds number.

1. Introduction
Hydrodynamic stability of parallel shear flows constitutes a fundamental and, to a

great extent, unsolved problem in science and engineering. A frequently investigated
case of hydrodynamic stability is the stability problem of plane Poiseuille flow. In early
theoretical investigations by Heisenberg (1924), Tollmien (1929), Schlichting (1933)
and Lin (1945), results derived by using heuristic and asymptotic methods indicated
that the Reynolds number (R) above which small disturbances may grow exponentially
is 5000. For a long period of time most theoretical studies of the stability were focused
on the two-dimensional (i.e. disturbances without a spanwise dependence) eigenvalue
problem. An important reason for that is that for every unstable three-dimensional
disturbance, there is a two-dimensional disturbance unstable at a lower Reynolds
number. For classical stability, it is therefore only necessary to consider the problem
of two-dimensional disturbances. This was originally proved by Squire (1933) who
introduced the well-known transformation that reduces the three-dimensional problem
to a two-dimensional problem. Although studies of the linearized two-dimensional
problem gave a critical Reynolds number well above 5000, experiments by Davies &
White (1928) had shown that transition to turbulence in plane Poiseuille flow can
occur at values of R as low as 1000. The discrepancy between the findings of linear
theory and experiments was at that time ascribed to nonlinear effects. In weakly



228 L. B. Bergström

nonlinear theory, Meskyn & Stuart (1951) applied the so-called mean-field theory and
found that finite-amplitude steady waves exist for Reynolds numbers substantially
lower than 5000. A nonlinear critical Reynolds number of about 2900 was suggested.
By expanding the equations governing the disturbances in powers of the disturbance
amplitude, Stuart (1960) and Watson (1960) derived Landau type equations for the
nonlinear development of the disturbances. The Landau coefficients then determine
the nonlinear stability characteristics of the disturbances. Landau coefficients were
subsequently calculated by Reynolds & Potter (1967), Pekeris & Scholler (1971) and
Herbert (1976). For higher-order approximations, Herbert (1976) found a nonlinear
critical Reynolds number of 2935. This was substantially lower than the ‘exact’ linear
critical Reynolds number of 5772 established numerically by Orszag (1971). Since
experimental investigations of plane Poiseuille flow indicated that transition may
occur for R around 1000 (Davies & White 1928), although nonlinearity reduces the
linear critical Reynolds-number, the nonlinear critical Reynolds number found was
still well above the experimentally obtained Reynolds-number limit for transition.
In some other types of parallel shear flow, there was an even more striking lack
of coherence between theoretical and experimental findings. For example, theoretical
studies of pipe Poiseuille flow and plane Couette flow showed that neutral stable
curves do not even exist.

The discrepancy between theoretical and experimental results of instability in
all types of parallel shear flows directed ideas towards the possibility of other
transition mechanisms that would bypass the traditional concept of exponentially
unstable disturbances. The idea of other routes to transition was first introduced
by Morkovin (1969) who suggested that it might be possible to bypass exponential
growth of disturbances if the exponential growth could be replaced with some other
strongly amplifying mechanism. One such mechanism is the so-called non-modal
mechanism on which work on the hydrodynamic stability of parallel shear flows
has been focused during the last few decades. In studies of the linearized two-
dimensional initial-value problem, Farrell (1988) found that damped disturbances in
plane Poiseuille flow could undergo a rapid phase of amplification, a so-called transient
amplification. The disturbance energy density amplification was about twenty-fold for
R = 1000, i.e. the lowest R for transition found in experiments. In the case of small
three-dimensional disturbances, Gustavsson (1991) showed a substantially stronger
amplification. The peak of the energy density amplification was nearly 180 for R =
1000 and occurred for streamwise independent structures. Butler & Farrell (1992)
used variational techniques to calculate the largest possible transient amplification of
three-dimensional disturbances, the so-called optimal disturbance amplification. The
optimal amplification was found to be 196 for R = 1000 and occurred for streamwise
independent disturbances with a spanwise wavenumber close to two. Also in plane
Couette flow and boundary-layer flow, strong amplifications were reported by Butler &
Farrell (1992). For example, in the plane-Couette-flow case, a disturbance energy
density amplification of 1166 (for R = 1000) was found to occur owing to non-
normality. Extensive results for the transient growth of disturbances in shear flows
were also presented by Reddy & Henningson (1993). In the pipe-Poiseuille-flow
case, Bergström (1993) calculated the optimal disturbance amplification for angular
dependent disturbances. The results showed that the largest amplification occurs for
streamwise elongated structures with an azimuthal wavenumber equal to one. For
R =2000, i.e. the lowest R for transition found in pipe-flow experiments, the optimal
amplification of the disturbance energy density was 288. Similar results were reported
by Schmid & Henningson (1994).
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The possibility of a transient disturbance development has also been verified
in a number of experimental investigations. In the plane-Poiseuille-flow case, by
inducing a point-like initial disturbance, Klingmann (1992) found a strong subsequent
disturbance amplification followed by decay. At high enough initial disturbance
amplitude, the disturbance continued to grow and eventually transition occurred. In
pipe Poiseuille flow, Bergström (1995) found experimental evidence for a transient
disturbance development. By re-exploring data from Kaskel’s (1961) pipe-flow
experiment, Mayer & Reshotko (1997) also found evidence of a transient disturbance
amplification in pipe Poiseuille flow.

The theoretical explanation for the observed strong amplification of damped
three-dimensional disturbances is the non-normality of the operators governing the
disturbances in all parallel shear flows. The eigenfunctions of non-normal operators
are not orthogonal. An intrinsic property of non-orthogonal eigenfunctions is that
a superposition of individually damped eigenfunctions causes a strong transient
amplification of the disturbance represented by the eigenfunctions. Another way of
explaining the strong amplification of three-dimensional disturbances is that the mean
flow shear together with the normal velocity disturbance act as a forcing of the normal
vorticity disturbance. This forcing is only present for three-dimensional disturbances.
Physically, this process can be seen as the lifting up of fluid elements in the presence
of a mean shear. The lift-up concept was introduced by Landahl (1975, 1980) who
showed that the lifting up of fluid elements in the wall normal direction generates a
streamwise disturbance velocity.

Although the transient growth of ordinary parallel shear flows has been thoroughly
studied, there are fluids for which the transient growth of disturbances has not been
investigated. One such fluid of particular interest is the superfluid helium II which
has been found to exhibit a high-Reynolds-number turbulent flow similar to classical
turbulence (see Smith et al. 1993; Barenghi et al. 1997). Helium II can be modelled
as a superposition of a normal fluid and a superfluid where the superfluid has zero
viscosity. The normal fluid and the superfluid interact via a mutual friction force
localized at the position of the vortex lines of the superfluid. The mutual forcing then
modifies the normal fluid flow field. The general form of the formula for the mutual
forcing, Fmutual, can be written (cf. Melotte & Barenghi 1998; Godfrey, Samuels &
Barenghi 2001)

Fmutual =
BρsL

(ρs + ρn)Vo

ωa × [ωa × (Un − U s)], (1.1)

where ωa is the vorticity of the superfluid averaged over many quantized vortex lines,
Un is the normal fluid velocity and U s is the superfluid velocity. B represents the
coefficient of the mutual friction and L and Vo are length and velocity scales,
respectively. ρs and ρn are the density of the superfluid and the normal fluid,
respectively. In (1.1), the ratio between the superfluid density and the total density
ρs/(ρs + ρn) is strongly temperature dependent. In § 2, a model for the mutual
forcing represented by (1.1) will be derived. In the model to be derived, the ratio
BρsL/(ρs +ρn)Vo is represented by a constant which consequently will also be strongly
temperature dependent. Since ωa in (1.1) represents the vorticity of the superfluid
averaged over many quantized vortex lines, variations in the superfluid field may not
have a dramatic influence on the mutual forcing term even if the superfluid field is
not preserved. Studies of the hydrodynamic stability of helium II have usually taken
a kinematic approach where the problem has been solved for one of the two fluid
components. The other component has then been held fixed and acts as a forcing
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term. The problem of keeping the superfluid fixed and solving for the normal fluid
was first done by Melotte & Barenghi (1998). They found a transition behaviour of
the normal fluid in agreement with experimental findings.

By keeping the superfluid fixed, in investigations of the two-dimensional eigenvalue
problem of plane Poiseuille flow of helium II, Godfrey et al. (2001) found two unstable
branches, an upper branch and a lower branch. The upper branch corresponds to the
instability branch of ordinary Poiseuille flow slightly shifted by the mutual friction
forcing. The lower new branch, which does not exist in ordinary Poiseuille flow, has
critical Reynolds numbers substantially lower than for the upper branch. At the lower
branch, the critical Reynolds number was found to decrease when the strength of the
mutual forcing increases. Since the classical stability characteristics (i.e. the question of
whether the eigenfunctions are damped or not) of plane Poiseuille flow are modified
by the mutual friction forcing, it is of interest to investigate how the mutual friction
forcing will affect the transient growth properties of three-dimensional disturbances.

The main objective of the present paper is therefore to investigate the stability of the
normal fluid field of helium II for transient growth. Specifically, the three-dimensional
initial-value problem of small disturbances in plane Poiseuille flow of helium II will
be addressed. It must, however, be emphasized that the physics of helium II is very
complex and that the model to be derived to represent the superfluid interaction is
a very simplified model. The model is a first approach to studying how the transient
growth properties, that have been a focus in hydrodynamic stability for the last decade,
will change by the presence of a forcing term representing the interaction with the
superfluid. The model is not intended to describe the full transition to turbulence
of helium II, but merely the initial growth of small disturbances in a laminar mean
flow. In § 2, the equation governing the mean flow of the normal fluid affected by the
mutual forcing is presented and solved. In § 3, the governing equations of the three-
dimensional disturbance field are presented. In § 4, the system of equations is solved
and results for the disturbance development are presented for different combinations
of parameters. Finally, in § 5, the results are discussed and commented upon.

2. The mean flow
In ordinary plane Poiseuille flow the mean flow U (y) in the streamwise direction (x)

is given by U (y) = 1 − y2 where y is the wall normal coordinate satisfying −1 � y � 1.
One way of modelling helium II is to consider the superposition of a normal fluid
and a superfluid where the two fluids interact via mutual friction. The mutual friction
is then represented by a forcing term in the equations governing the flow. The mutual
forcing term will then affect the normal fluid and thereby modify U (y). Here, the
study of helium II will thus be conducted with a model where a modified mean flow is
considered. The general structure of the Navier–Stokes equation for a steady normal
fluid mean flow, Un(y), in the streamwise (x) direction then becomes

− 1

R
U ′′

n = −dP

dx
+ FMF, (2.1)

where Un satisfies the boundary conditions

Un(±1) = 0. (2.2)

In (2.1), R is the Reynolds number based on the centreline velocity and the channel
half-width, a prime denotes differentiation with respect to y, the term dP/dx is a
uniform pressure gradient (given by dP/dx = −2/R) and the term FMF represents the
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mutual forcing between the normal fluid and the superfluid. The subsequent modelling
of the mutual forcing FMF will essentially follow the steps presented by Godfrey et al.
(2001). The superfluid has a uniform mean velocity profile, here denoted by Us . The
magnitude of Us is chosen so that the mean flow rate of the superfluid becomes
the same as for the Poiseuille profile U (y) = 1 − y2. This implies that Us = 2/3. In
a number of studies, the mutual forcing FMF has been found to be proportional
to the difference between the normal fluid velocity and the superfluid velocity, (cf.
Barenghi, Donnelly & Vinen 1983; Donnelly 1991). Therefore, the mutual forcing is
zero in positions where the normal fluid mean velocity and the superfluid velocity
have the same magnitude. This occurs thus in the positions where the Poiseuille profile
U (y) has the magnitude 2/3, i.e. for y = ±1/

√
3. Moreover, the superfluid vorticity is

assumed to have a Gaussian distribution with peaks in the positions y = ± 1/
√

3. This
is motivated by the findings of Samuels (1992) who conducted simulations showing
that the vortex filaments of the superfluid are concentrated to regions where the
normal fluid and the superfluid have the same magnitudes. With these assumptions
made, the mutual forcing FMF can be modelled as

FMF = N(y)(Un(y) − Us), (2.3)

where N(y) is given by

N(y) = Fm

(
exp

(
− (y + 1/

√
3)2

2σ 2

)
+ exp

(
− (y − 1/

√
3)2

2σ 2

))
. (2.4)

In (2.4), Fm is a parameter for controlling the strength of the mutual forcing term
and σ is the standard deviation of the superfluid vorticity distribution. The magnitude
of σ is assumed to be small in order to mimic the physical behaviour of a vorticity
distribution concentrated around y = ±1/

√
3. The derived model (2.3), (2.4) for the

mutual forcing FMF is, of course, a highly simplified model which cannot be expected
to mimic the full physics of helium II. Therefore, it is considered as a first step to
studying how the transient growth of disturbances is affected by the presence of a
forcing term. Continuing work could include a more sophisticated model including
for example a feedback from the normal fluid to the superfluid. From (1.1), (2.3)
and (2.4), it is clear that Fm must be proportional to the ratio of the superfluid
density to the total density. Since the density ratio is strongly temperature-dependent,
Fm is a strongly temperature-dependent parameter. A certain value of Fm represents
therefore a certain temperature. Changing Fm will imply that another temperature is
considered.

The development of the normal mean flow Un is then described by the following
equation and boundary conditions

− 1

R
U ′′

n − N(y)Un = −N(y)
2

3
+

2

R
, (2.5)

Un(±1) = 0. (2.6)

With Fm = 0, (2.5) gives merely the ordinary plane Poiseuille flow profile U (y) =
1 − y2. If Fm �= 0, the mean flow becomes modified by the mutual forcing represented
by N(y) in (2.5). The mean flow equation (2.5) is solved numerically with the finite-
element method. The software used to solve (2.5) is version 3.2 of the commercially
available program Comsol Multiphysics. The so-called coefficient form interface of
the software is used. In the coefficient form interface, it is possible to tailor arbitrary
systems of differential equations with boundary conditions and initial conditions.
Equation (2.5) and the corresponding boundary conditions are implemented in the
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Figure 1. The mean flow Un for σ = 0.05, R = 1000 with Fm = 0 and Fm = 0.04.

coefficient form interface of the software by setting the coefficients of a generic
equation. The interval −1 � y � 1 is divided into 32 subintervals and on each
subinterval a fourth-degree polynomial (a Lagrange quartic element) is used to
approximate the solution. The type of program Comsol Multiphysics represents and
the coefficient form interface have also been used in an earlier study of hydrodynamic
stability where the program Femlab, i.e. the predecessor to Comsol Multiphysics, was
used (see Bergström 2005).

If the parameters Fm and σ in (2.5) are chosen without any restrictions, it is possible
to accomplish exotic forms of the mean flow Un; for example, we can achieve huge
magnitudes or even reverse the direction of the mean flow for certain combinations
of Fm and σ . Therefore, in order to focus on physically realistic mean flows, Fm and
σ are kept relatively small in this work. The parameters are chosen so that the mean
flow does not deviate too much from the Poiseuille profile of an ordinary fluid. In fact,
as will be shown in the next section, the mutual forcing will substantially change the
transient growth characteristics, even if the parameters Fm and σ are small. In figure 1,
the mean flow Un obtained by the software is presented for σ = 0.05, R = 1000, Fm = 0
and Fm = 0.04. The mean flow profile is only slightly affected by the mutual forcing
in this case and there is hardly a visible difference between the two curves. A closer
examination shows that the maximum difference between the curves occurs for y = 0
where Un of the Fm = 0.04 case has about 0.5 % higher magnitude than Un of the
Fm = 0 case. However, in figure 2 where the mean flow shear U ′

n (=(dUn/dy)) is
presented for the same parameters as in figure 1, especially in the regions around
y = ±1/

√
3, the Fm = 0.04 case clearly deviates from the Fm = 0 case owing to the

mutual forcing. This is of particular interest since the shape of the mean shear is
important for the transient growth. It is well known that a modification of the mean
flow shear can alter the transient growth properties. An example for pipe flow is given
in Bergström (2003a) where the mean flow modification is caused by the Coriolis
force. Physically, the mean shear is important because the mean shear U ′

n together
with the wall normal velocity disturbance act as a forcing in the disturbance equations.
This will be further investigated and elucidated in the next section.
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Figure 2. The mean shear U ′
n for σ =0.05, R = 1000 with Fm = 0 and Fm = 0.04.

3. The governing equations of the three-dimensional disturbance field
The mean flow Un presented in § 2 will be exposed to a three-dimensional velocity

disturbance field (u, v, w) and an associated pressure disturbance p. The disturbances
u, v and w are thus the velocity disturbances in the streamwise (x), wall-normal (y)
and spanwise (z) directions. The time development of small disturbances is governed
by the linearized Navier–Stokes equations and the continuity equation. First, those
equations are Fourier-transformed in the streamwise and spanwise directions, and α

and β are introduced as the streamwise wavenumber and the spanwise wavenumber,
respectively. This results in the following system of partial differential equations
where u, v, w and p from now on represent the Fourier transformed forms of the
disturbances,

∂u

∂t
+ iαUnu + U ′

nv + iαp +
1

R
(α2 + β2)u − 1

R
u′′ − N(y)u = 0, (3.1a)

∂v

∂t
+ iαUnv +

∂p

∂y
+

1

R
(α2 + β2)v − 1

R
v′′ − N(y)v = 0, (3.1b)

∂w

∂t
+ iαUnw + iβp +

1

R
(α2 + β2)w − 1

R
w′′ − N(y)w = 0, (3.1c)

iαu + v′ + iβw = 0, (3.1d)

where i =
√

−1. The boundary conditions for u, v and w are given by

u(±1) = v(±1) = w(±1) = 0. (3.2)

The boundary conditions for w together with (3.1c) mean that p must satisfy the
boundary conditions,

p(±1) =
−i

βR
w′′(±1) (β �= 0). (3.3)

In (3.1), the difference compared to the ordinary plane-Poiseuille-flow case is that
the mean flow Un and the mean shear U ′

n are not the same as in the ordinary case and
that the N(y)-term multiplied with u, v and w occurs. The mutual forcing has thus
the potential to affect the disturbance development in two ways, through the mean
flow terms Un and U ′

n and directly by N(y) in the (3.1a–c). System (3.1) is solved
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numerically with the finite-element program described in connection to the mean flow
equation in § 2. For practical reasons, (3.1) and the mean flow equation (2.5) are
solved simultaneously as a system of five equations which are all set up and defined
in the coefficient form interface of the software. The initial condition for v, denoted
v0, will be the analytically accessible first symmetric eigenfunction of the α = 0 form
of v from the ordinary plane-Poiseuille-flow case, i.e.

v0 = cosh(β) cos(λ1y) − cos(λ1) cosh(βy), (3.4)

where λ1 is the first eigenvalue satisfying the relation

λ tan(λ) + β tanh(β) = 0, (3.5)

(cf. Gustavsson 1991). The reason for choosing the symmetric v as an initial condition
is that a symmetric wall-normal disturbance v induces an antisymmetric streamwise
disturbance u through the forcing term U ′

nv in (3.1a). In earlier works, it has been
found that the antisymmetric streamwise disturbance u exhibits the largest transient
growth (see e.g. Gustavsson 1991; Butler & Farrell 1992). The initial streamwise
disturbance denoted u0 is chosen to be zero. In this way, the forcing of u by U ′

nv in
(3.1a) can be exclusively studied. Through the continuity equation, the initial form of
the spanwise disturbance w is then given by w0 = iv′

0/β, (β �= 0). A common way to
characterize the time development of the disturbances is to consider the amplification
of the energy density in Fourier space defined as

EAmp =

∫ 1

−1

(uu∗ + vv∗ + ww∗) dy

∫ 1

−1

(u0u
∗
0 + v0v

∗
0 + w0w

∗
0) dy

, (3.6)

where an asterisk denotes the complex conjugate. When the solutions for u, v and
w have been obtained, a post-processing routine of the software is used to solve
the integrals in (3.6) for each time step. The program Matlab is then used for the
graphical presentation of the results.

4. Results
4.1. The ordinary case Fm = 0

First, the ordinary plane-Poiseuille-flow case, i.e. Fm = 0 in (2.4), will be considered in
order to verify the reliability of the numerical software. The ordinary case has been
thoroughly studied and analytical solutions are also available for the special case
of streamwise independent disturbances, i.e. α = 0. In the α =0 case, with the initial
condition (3.4), the largest transient growth has been found to occur for β = 1.98
(cf. Gustavsson 1991). For R = 1000, Fm = 0, α =0 and β = 1.98, the peak value of
EAmp is slightly lower than 180 and occurs at approximately t =84 (i.e. t/R = 0.084).
This coincides well with the analytically accessible results for transient growth in
ordinary plane Poiseuille flow presented by Gustavsson (1991) for the same values
of the parameters. Although the largest transient growth in ordinary plane Poiseuille
flow occurs for β close to two, it will be shown subsequently that this is not the case
in the helium II case. However, since the present paper focuses on how the transient
growth properties of a helium II fluid differ from the ordinary fluid case, β = 1.98
together with different values of Fm, σ and α will be used in most of the cases to
be studied here. The value of β will thus be close to the value where ordinary plane
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Figure 3. The time development of EAmp for σ =0.05, R = 1000, α =0, β = 1.98 and Fm = 0,
0.01, 0.02, 0.03, 0.04.
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Figure 4. The peak value of EAmp versus Fm for σ = 0.05, R =1000, α = 0 and β = 1.98.

Poiseuille flow exhibits the largest transient growth for the initial disturbance (3.4) and
the results obtained for helium II can be directly compared to the results obtained
for the corresponding wavenumber combination in the ordinary fluid case.

4.2. The disturbance development for different magnitudes of Fm

The development of EAmp for different values of the parameter Fm will now be
considered. Since Fm is strongly temperature dependent, varying Fm will represent
cases of different temperature. In figure 3, the development of EAmp is presented
for R = 1000, α = 0, β = 1.98, σ = 0.05 and Fm = 0, 0.01, 0.02, 0.03, 0.04. There is a
strong increase of the peak amplification of EAmp when Fm increases from 0 to 0.04.
For Fm =0, the peak value of EAmp is slightly less than 180 and for Fm = 0.04, the
peak value of EAmp is 2245. The peak position of EAmp also occurs substantially
later as Fm increases. This implies that the N(y)-terms in (3.1) reduce the damping
of the disturbances. When the magnitude of Fm is high enough, exponential growth
occurs. In this case, exponential growth occurs for Fm � 0.06. In figure 4, the peak
amplification of EAmp versus Fm is presented. For Fm = 0.02, the peak value of EAmp

deviates slightly from the overall pattern and a dent in the curve can be discerned. This
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Figure 5. The time development of EAmp for σ = 0.05, R =1000, α = 0, β = 1.98 and Fm = 0.04.
The two curves represent the disturbance development due to the mean flow Un from equation
(2.5) and the mean flow Un ≡ U =1 − y2.

deviation is caused by the mean shear and will be explained below. Since the mean
shear U ′

n is known to be crucial for the occurrence of transient growth, it is of interest
to investigate to what extent U ′

n is responsible for the increased transient growth
observed in figure 3 when Fm increases. In order to investigate that, the mean flow
U (y) = 1−y2 from ordinary plane Poiseuille flow will temporarily be used in (3.1). In
figure 5, for the proper Un from (2.5) and for Un ≡ U =1−y2, the development of EAmp

is presented for R = 1000, α = 0, β = 1.98, σ = 0.05 and Fm = 0.04. With the proper
Un from (2.5), the peak value is 2245 whereas for Un ≡ U = 1 − y2, the peak value
of EAmp is 2147. The transient growth has thus been only slightly reduced compared
to the case where the proper Un and U ′

n are used. This shows that the N(y) terms in
the disturbance equations (3.1) to a great extent cause the increased transient growth
by reducing the damping of the disturbances. In the cases considered in figure 3, the
modification of the mean flow and the mean shear is of minor importance for the
increased transient growth. Nevertheless, the U ′

nv term in (3.1a) is necessary for any
transient growth to occur. In fact, with the U ′

nv term in (3.1a) temporarily set to
zero, the energy density EAmp merely decay exponentially. The fact that the forcing is
generic for the transient growth to occur concerns all types of parallel shear flows. In
figure 4, for Fm = 0.02 a slight deviation from the overall pattern can be discerned.
The extra boost in amplification indicated for Fm = 0.02 is due to a relatively large
mean shear modification that happens to occur for the particular combination of the
parameters Fmand σ . In figure 6, the mean shear U ′

n is presented for Fm = 0.015, 0.02
and 0.025 with σ = 0.05. The Fm = 0.02 case clearly deviates from the other two cases
which almost coincide. This deviation thus increases the relative influence of the mean
shear U ′

n on the transient growth in the Fm = 0.02 case compared to the Fm = 0.015
and 0.025 cases. This results in a little extra boost of the peak amplification of EAmp

and explains the dent in the curve observed in figure 4.

4.3. Non-zero streamwise wavenumber

The results presented so far show that the presence of the mutual friction forcing
substantially increases the transient amplification of α = 0 disturbances compared
to the ordinary fluid case. The disturbance development for non-zero streamwise
wavenumbers α will now be considered. In figure 7, the development of EAmp is
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Figure 6. The mean shear U ′
n for σ = 0.05, R = 1000 with Fm = 0.015, 0.02 and 0.025.
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Figure 7. The time development of EAmp for σ = 0.05, R = 1000, β = 1.98, Fm = 0.04 and
α = 0, 0.05, 0.1, 0.2 and 0.3.

presented for R = 1000, Fm =0.04, σ = 0.05, β = 1.98 and the streamwise wavenumbers
α = 0, 0.05, 0.1, 0.2 and 0.3. When α increases, the peak amplification level quickly
becomes reduced and the peak position of EAmp occurs earlier. The peak amplification
of EAmp has decreased from 2245 for α = 0 to 761 for α = 0.1. This shows that as in the
ordinary fluid case, streamwise elongated structures are the most transiently amplified
ones in the helium II case. Other combinations of Fm and σ give the same result,
i.e. the amplification decreases as α increases. The fact that elongated structures are
favoured by the transient growth is a common property of parallel shear flows. Since
α = 0 exhibits the largest transient amplification in the helium II case also, α = 0 will
be used in the subsequent investigations.

4.4. The effect of the spread of the vorticity distribution on the amplification level

The magnitude of the standard deviation σ of the superfluid vorticity distribution
affects the mutual forcing by regulating the spread of the vortices. If σ increases, the
vorticity distribution becomes wider and has thereby the potential to affect the flow
to a greater extent. In order to investigate how the width of the vorticity distribution
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affects the disturbance development, σ will be varied for constant magnitudes of
Fm. Since Fm is strongly temperature dependent, this will show how the disturbance
development varies with σ at a certain temperature. The influence of the standard
deviation on the transient growth is presented in figure 8(a) where the development of
EAmp is shown for Fm = 0.04, R = 1000, α = 0, β = 1.98 and σ = 0.01, 0.02, 0.03, 0.04
and 0.05. When σ is reduced from 0.05 to 0.04, the peak amplification of EAmp is
reduced from 2245 to 951, i.e. by almost 58 %. The peak position of EAmp occurs
substantially earlier and moves from t = 296 to t = 194.5. When σ is reduced further,
the peak amplification continues to decrease and the position of the peak occurs
earlier. Finally, the amplification of the ordinary plane Poiseuille flow is approached
when σ approaches zero. With Fm = 0.04, exponential growth occurs if σ is increased
above approximately 0.065. In figure 8(b) the development of EAmp is presented for
R =1000, Fm =0.01, α = 0, β = 1.98 and σ = 0.05, 0.06, 0.07, 0.08, 0.09 and 0.1. The
peak amplification decreases when σ decreases, but not to the same extent as in
the previous case where Fm was larger and σ smaller. By halving σ from 0.1 to 0.05,
the peak amplification decreases from 466 to 261. The reduction of the amplification
as σ decreases is thus not as pronounced as it was for smaller σ in the Fm = 0.04
case in figure 8(a). Compared to the previous case, the position of the peak value of
EAmp occurs somewhat later when σ increases. With Fm = 0.01, exponential growth
occurs for σ above approximately 0.48, i.e. for a substantially larger value of σ than
in the Fm = 0.04 case.

4.5. The spanwise wavenumber β

In general, a spanwise dependence (i.e. β �= 0) is crucial for substantial transient
growth to occur in planar shear flows. Although transient growth can also occur in
the two-dimensional case (see e.g. Farrell 1988), the amplification levels in the two-
dimensional case are far from the amplification levels found in the three-dimensional
case. As mentioned earlier, for ordinary plane Poiseuille flow, the largest transient
growth occurs for the spanwise wavenumber β close to 2. However, for helium II,
this is in general not the case. This is evident in figure 9 where the time development
of EAmp is presented for Fm = 0.04, σ =0.05, R = 1000, α = 0 and the spanwise
wavenumbers β =1.8, 1.9, 1.98, 2.1 and 2.2. Here, the transient growth increases
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Figure 9. The time development of EAmp for Fm = 0.04, R = 1000, α = 0, σ = 0.05 and β =
1.8, 1.9, 1.98, 2.1 and 2.2.

when β decreases. It continues to do so when β is further reduced below 1.8. This is
strikingly different to the ordinary fluid case where the maximum amplification occurs
for β close to 2. Obviously, the modification of the ordinary system by the N(y)-terms
in (3.1) implies that the way the peak amplification depends on β becomes modified.
The presence of the mutual forcing N(y) in (3.1) thus changes the behaviour found in
the ordinary case. An explanation for this result could be that the relative influence
of the N(y) terms that support growth in (3.1) increases when β decreases. This is
further developed and commented upon in connection with (5.1) in § 5. However, the
exact way in which the peak amplification level depends on β is not easily revealed,
not even in the ordinary case. In (3.1a–d), β occurs explicitly in several terms as well
as implicitly in u, v, w and p. Also, β is included in the initial conditions. When the
magnitude of Fm is reduced enough, a β-behaviour like that in the ordinary case is
found.

4.6. The Reynolds-number dependence of the peak amplification

It is well known that in parallel shear flows of an ordinary fluid, the peak energy
density amplification is proportional to the square of the Reynolds number (see
e.g. Butler & Farrell 1992). The structure of the equations governing helium II
alters the way the peak amplification of EAmp depends on the Reynolds number.
This is evident in figure 10 where the peak value of EAmp versus R is presented
for Fm = 0.01, σ = 0.05, α = 0 and β = 1.98. The curve represents a quadratic R-
dependence normalized to the R =1000 case and the stars represent the actual peak
amplifications for different values of R. The peak amplification in the helium II
case does not exhibit a quadratic Reynolds-number dependence, instead a stronger
Reynolds-number dependence is indicated in figure 10. This can be explained by
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introducing the scalings (cf. Gustavsson 1991; Schmid & Henningson 2001)

ū =
u

βR
, t̄ =

t

R
, v̄ = v. (4.1)

The largest peak amplification occurs for α = 0 disturbances. By inserting the
transformations (4.1) into the α = 0 version of (3.1a) the following modified form of
(3.1a) is obtained:

∂ū

∂t̄
+

U ′
nv̄

β
+ β2ū − ū′′ − RN(y)ū = 0. (4.2)

If N(y) = 0, ū will not depend on the Reynolds number R and the energy density

associated with u is given by β2R2
∫ 1

−1
ū2dy; that is, the energy density associated with

u depends on R2 since ū is independent of R. If N(y) �= 0 in (4.2), ū will depend on
R and the R2 dependence of the energy density associated with u becomes thereby
altered. Thus, the R dependence found for transient growth of disturbances in an
ordinary fluid does not hold any longer. This will also be substantialized with a
model equation in the Appendix. In general, the R2 dependence of the peak energy
density amplification of disturbances found in the ordinary fluid case does not hold
if the fluid properties are modified. For example, in the study of transient growth
of disturbances in a Jeffrey fluid flowing through a circular pipe, Bergström (2003b)
showed that the R2 dependence of the energy density peak amplification is not valid.

5. Discussion
The transient growth of small disturbances in plane Poiseuille flow of a helium II

fluid has been investigated. The results show that the transient growth properties are
substantially modified compared to the case of an ordinary fluid. The mutual forcing
boosts the transient growth by counteracting the terms that restrain amplification.
This is the major reason for the increased amplification compared to the ordinary
case. However, there is also an additional less significant affect on the growth caused
by the modification of the mean flow. For particular combinations of Fm and σ , the
mean flow modification can, however, play a more significant role. For example, the
dent observed in figure 4 for Fm = 0.02 is caused by the mean flow modification which
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was found to be larger for Fm = 0.02 than for Fm slightly lower or slightly higher than
0.02. However, we must bear in mind that the dent occurs as a result of a relatively
large mean shear modification for a particular combination of the parameters in the
present model. The physical relevance of the dent should therefore be questioned as
long as it has not been verified by a more sophisticated model.

The increased transient growth occurs because the damping of the disturbances
decreases owing to N(y). This can be illustrated by considering the change of the
energy density of the velocity disturbances. For example, in the α = 0 case, the change
of the energy density (Eu) associated with the streamwise disturbance velocity u can
be expressed as

∂Eu

∂t
= −

∫ 1

−1

U ′
nvu dy − 1

R

∫ 1

−1

(β2u2 + u
′2) dy +

∫ 1

−1

N(y)u2 dy. (5.1)

This expression is obtained by multiplying (3.1a) by u and integrating over the
channel height and exploiting the boundary conditions. When N(y) = 0, the only term
that can increase the energy density is the U ′

nvu term in (5.1). This term causes the
transient growth of the streamwise disturbance. When N(y) �= 0, the N(y)-term which
is always positive counteracts the always negative 1/R-terms in (5.1) and thereby
reduces the damping. When N(y) becomes sufficiently dominant, exponential growth
may occur.

Concerning the Reynolds-number dependence of the peak amplification, in figure 10
it is evident that the R2-dependence of the peak amplification of the energy density
found for an ordinary fluid does not hold in the helium II case. Because of the N(y)
term, the well-known R2-dependence becomes modified and the peak amplification
of the energy density depends more strongly on R in the helium II case than in the
ordinary fluid case.

In this work, a single α = 0 eigenmode from the ordinary fluid case is used as an
initial disturbance. For α = 0 disturbances of an ordinary fluid, the initial disturbance
(3.4) gives a disturbance development close to the optimal one, i.e. the disturbance
giving the largest possible amplification. However, the initial disturbance of an optimal
disturbance is, in general, composed of several eigenmodes. Thus, although the
transient amplifications found in this work are substantially larger than in the case
of an ordinary fluid, they are not necessarily the largest possible amplifications that
can be obtained in the helium II case.

The present investigation concerns the time development of small three-dimensional
disturbances, i.e. the linearized initial-value problem has been considered and
nonlinear effects are not taken into account. The intrinsic mechanism of transient
growth is, however, a completely linear mechanism associated with the non-modal
properties of the equations governing the disturbances in parallel shear flows. An
alternative more physical way of describing the core of the transient growth is that
the U ′

nv term in (3.1a) forces the streamwise velocity disturbance. Although transient
growth is caused by a linear mechanism, nonlinearity would affect the transient growth
and a continuation of the work could be to investigate how nonlinearity would modify
the disturbance development found in the present work. Another continuation of the
work presented here could be to invoke the disturbance field of the superfluid. The
superfluid disturbances will then be affected by a forcing from the normal fluid.
Such an approach will also modify the mutual forcing terms. Alternative models for
modelling the mutual forcing can also be considered.
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Appendix. A simplified model equation
A simplified model equation that to some extent mimics the specific behaviour of

helium II found in the present work will be derived. For α = 0, equation (3.1a) and
the corresponding boundary conditions become

∂u

∂t
+

1

R
(β2 − RN(y))u − 1

R
u′′ = −U ′

nv, (A 1)

u(y = ±1) = 0. (A 2)

By inserting the ansatz u ∼ û(y)e−ct into (A 1) and considering the homogeneous
part of the resulting equation, the following eigenvalue problem is obtained:

û′′ + (Rc − β2 + RN(y))û = 0, (A 3)

û(±1) = 0. (A 4)

In a simplified model where N(y) is replaced by a constant Nc, the solution to the
eigenvalue problem (A 3), (A 4) becomes û= sin(nπy) and c = (n2π2 + β2 − RNc)/R
where n= 1, 2, 3, . . ..

A simple model equation that mimics the transient time development found in this
work can then have the form

dµ

dt
+

(
π2 + β2 − RNc

R

)
µ = υ exp

(
−λ2 + β2 − RNc

R
t

)
, (A 5)

µ(0) = 0. (A 6)

In (A 5), µ is a transiently amplified quantity where the term (π2 + β2 − RNc)/R
represents the damping of µ and where the term (λ2 + β2 − RNc)/R represents the
damping of a quantity forcing µ. The forcing quantity υ exp(−(λ2 + β2 − RNc)t/R)
on the right-hand side of (A 5) could thus represent the U ′

nv term in (3.1a). The
parameters λ, β, R, υ and Nc are all constants. The solution of (A 5) is readily given
by

µ(t) =
υR

π2 − λ2

(
exp

(
−λ2 + β2 − RNc

R
t

)
− exp

(
−π2 + β2 − RNc

R
t

))
. (A 7)

In (A 7), it is easily verified that an increase of Nc decreases the damping in both
exponential terms. In figure 11(a), the time development of µ2 is considered for
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Figure 12. The peak amplification of µ2 from the simplified model equation (A5) versus the
parameter R for Nc =0 and Nc = 0.001.

λ= 2.4879 (i.e. the same value as λ1 from (3.5)), β = 1.98, R =1000, υ = 0.4347 and
Nc = 0, 0.001, 0.002 and 0.003. The value of υ is chosen to obtain a peak amplification
of approximately 180 for Nc = 0 (i.e. the same amplification as in the real case). The
transient amplification of µ2 increases as Nc increases. If Nc becomes large enough,
exponential growth will occur. This behaviour is thus analogous to the real case. With
the above presented values of the parameters, exponential growth occurs for Nc just
above 0.010 since RNc then becomes larger than λ2 + β2 in (A 7). This is shown in
figure 11(b) where the time development of µ2 is presented on a logarithmic scale for
larger values of Nc. For Nc =0.011, exponential growth occurs as expected. In (A 7),
it is also obvious that an increase of the Reynolds number will make the Nc term
more dominant. In figure 12, the peak amplification of µ2 versus R is presented for
Nc = 0 and Nc = 0.001. For Nc = 0, the peak value of µ2 depends on the square of the
Reynolds number whereas for Nc =0.001 the peak value of µ2 does not depend on
R2. Instead a stronger R-dependence is indicated.
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